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Quantitative evaluation of the Gibbs theory
of the glass transition
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The utility of a reduced parametric plot of glass transition (7,/7,,) versus the reciprocal degree of
polymerization (1 03/P) is reviewed and illustrated for the case of the Glbbs theory of the glass transition.
These results show that the number of lattice sites occupied per mer (n) affects T, more than variations in
the fractional free volume at 7, (V;). Traditionally a variation of the Gibbs theory (n= 1) has been used to
explain i ie P dependence of 7, for poly(methy! methacrylate) (PMMA). However, statistical analyses of
all avai: . .le PMMA data sets show that there is an interrelation between n and V, at the 0.05 level such
that many acceptable solutions occur, one of which is at V,=0.025 and n=1.25. Therefore, a unique
solution may not be obtained unless a free volume is either (1) assumed as Gibbs and others had
routinely done, or, more properly, (2) calculated from the PVT equation of state. In the latter case,
however, knowledge of the ratio of hole energy to flex energy (r) is required. With only subjective
evaluations previously available, the statistical methodology is presented as an alternative, objective
approach to compare 7, data with theory.

(Keywords: Glass transition; poly(methyl methacrylate); Gibbs theory; free volume: hole energy: flex

energy)

INTRODUCTION

In describing their refractomeric technique used to
measure the glass transition in poly(methyl methacrylate)
(PMMA), Beevers and White (B & W)! reviewed the
experimental work of, among others, Flory, Fox,
Mandelkern, and Tobolsky. Subsequently, B & W
selected three theories to describe their results: the
straight line approach which relates the reciprocal of the
degree of polymerization (P)~! to the glass transition (T;)
(ref. 2), and the statistical mechanical theories of Gibbs
(G)® and Gibbs-DiMarzio (G-DM)*. Of these, the G
theory was acknowledged to yield the best agreement, i.e.:
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in which f§ equalled the flex energy divided by the product
of Boltzman’s constant and T,(= —¢/kT,), V, was the
fractional free volume at T;, and x (the number average of
chain atom segments**) was equated to P. On this basis e =

0.98 Kcal mol ! segment V,=0.025, and T,, =390 K.

Later work by Thompson® on stereoregular PMMA’s, by
Pratt® on irradiated acrylic, and by Kim et al.” on the
dynamic mechanical properties of PMMA and its

* Present address: Department of Mechanical Engineering, University
of Colorado, Boulder, CO 80309, USA.

** In B & W's original work, this equation was actually used to
determine curve 3 of Figure 3, although the stated expression substituted
P for P—2 in the last two terms enclosed by brackets. For the case of
PMMA such an assignment would have reduced 7; by 2,17,and 88 K for
a P of 1000, 100, and 10, respectively.
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copolymers simply described T, in terms of reciprocal
chain length.

In more recent work, the G theory has been employed
to describe the T, dependence on irradiated fractions® and
polymer blends?. In the first case, exposure to as much as
500 Mrad of '37Cs y-rays reduced P from 5900 to 12. For
V6=0.025, ¢ equalled 0.97 (T, =385K) or 1.00 (T, =
395 K) Kcal mol ™! segments depending upon the specific
convention of T, adopted. In the second case, polymer
blends were prepared from three feedstocks having P = 39,
321, and 1220. For all three binary systems, ¢ =0.99-1.00
Kcal mol~! segments (T}, =395.1-399.1 K) when once
again V,=0.025. In both these cases only one lattice site
was occupied per mer, i.e. X=nP in which n=1.

In the most recent effort the influence of V,, the inter-/
intramolecular energy ratio (r), and the chain segment
density (n) were evaluated for the G-DM theory!°. Using
reduced variables plots, a family of curves was generated,
the slopes of which decreased with increasing n as either
V, or r was fixed at 0.015, 0.030, and 0.045 or 0.8, 1.0, and
1.2, respectively. Of the four polymers evaluated, PMMA
was bracketed by n=1, V;,=0.030,and by n=2, ¥,=0.030
(r=0.7-1.1). The present work not only demonstrates the
parametric variations of the G theory but also evaluates
the overall fit of PMMA data via statistical analysis
techniques.

THEORETICAL CONSIDERATIONS

Figure 1 outlines the methods and rationale used in the
construction of the reduced T; plots. If T, is plotted against
both the reciprocal of the number average molecular
weight (M,) and ¢, a unique surface is generated for each
value of V. Such a solution set may be computed for each
different polymer having mer molecular weights, M,=A,
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Figure 1 Construction of a reduced Tg plot (T,=7,/ T o0 cf. text
for details)

B, C, ..., in which A#B#C...(cf. Part I). By capitaliz-
ing on the fact that M,/M,=P, all polymers may be
reduced to a mer molecular weight basis, i.e. to a single
three-dimensional diagram (¢f. Part II). The actual
diagrams have been illustrated in Figure 2 of ref. 11 for
both the G and G-DM theories. Over the extensive range
of parameters investigated, i.e. P=10-00, e=0-2.5 Kcal
mol ™! segment, and V,=0.015-0.045, T, was most
sensitive to changes in . Consequently, if a constant ¥,
surface were chosen arbitrarily and ¢ values were
restricted to discrete intervals, a two-dimensional plot
would result (¢f. Part III). Knowing that the reduced
parameter, T,=T,/T, ., is directly proportional to the ¢
ratio and assuming that ¢ is constant for any P, T, is an
inverse function of the f’s alone (cf. solid line, Part IV).
This functionality is true for any arbitrary value of ¢ (cf.
the dashed feedback loop between Parts III and IV) and,
indeed, only broadens slightly when ¥, is extended over a
sensible range (cf. the dashed feedback loop between Parts
IT and IV and the dashed envelope about the solid line in
Part 1V). The single curvilinear bands have been shown
for both statistical mechanical theories with the con-
straints that the sublattices of co-ordination number z =4,
Z'=4,a=00,and x =2P for the G-DM theory*, and that
z=4,z'=00,and x=2P for the G theory (¢f. curves 1 and
2, Figure 1, ref. 11). _

The constraint that n=2 in x=nP is based on the
tenuous assumption that, for vinyl polymers, each back-
bone carbon atom and its attendant side groups occupies
only one lattice site. If the size of a methylene group is
arbitrarily taken to define the dimensions of a lattice
site'”, then the presumption that n=2 is likely to be in
error more often than not. For example, the number of
lattice sites occupied per mer, i.e. ‘beads’, has been

* The variation in the major lattice co-ordination number z’, over the
range 4-12 has been generally discussed by Moacanin and Simha'? and
specifically considered by Eisenberg'? for sodium phosphate polymers.
Moreover, when ¢ x | Kcal mol ™! segment, the hole energy (E,=2z'e/2
where z' =4)** affects f little for o> 1 (ref. 15), so that «= oo (¢f. Figure 1
and footnote 18 of ref. 4). Further enumeration on both the ‘semi-
empirical’ parameter, ¢, and the co-ordination numbers, z and z', may be
found in Gordon et al.'®

calculated for four well-documented polymers, PMMA,
PS, PVC,and PaMS, and the results indicate that n equals
5.9,6.1,3.0,and 7.4, respectively (cf. Table 2, ref. 18). While
PMMA, PS, and PaMS have similar values, T, versus P !
measurements indicate that the »’s are not comparable; on
the contrary, P«MS is much more P~! dependent.
Another approach can be taken whereby the number of
flexible bonds per monomer, i.e. ‘flexes’, is assumed to be
proportional to n. For this case the corresponding values
that have been suggested are 3-4, 2,2, and 2 (ref. 18). Once
again the experimental measurements do not substantiate
the ranking of inherent flexibilities; P#MS is much stiffer.

To justify B & W’s implicit extension of the G theory to
include n, more than a simple static definition of beads
and flexes is necessary. For the G-DM expression one
approach is to ascribe some of the x’s to beads and others
to flexes. A more general approach, however, is to
consider a dynamic lattice model in which the beads
occupy the required space but the flexes represent more
than a mere accounting of mobile bonding sites. Within
this context an inter- as well as an intramolecular
flexibility should be considered in order to have a more
realistic appraisal of chain mobility. Otherwise, the
extreme situations of either inherently stiff molecules with
comparatively sessile pseudolattices or flexible ether
linkages within fluid-like lattices may be misinterpreted.
In an attempt to bridge the gap between these two
approaches, the following results first generalize the G
theory in terms of n.

RESULTS

The reduced plot of T, versus P~'isshownin Figure2asa
function of n and V. As previously for the G-DM theory,
the T,/T,,. is evaluated from the point where chain end
effects are likely to interfere with the model (P =10) to the
point where the functions are clearly converging towards
the ‘infinite® molecular weight polymer, P=1000.
Similarly the index, n, varies from 0.5 to 25 and includes
the original interpretation of G (x = 2P) as well as that of
B & W (x=P). Like the G-DM theory, V, ranges from
0.015 to 0.045 (cf. hatched regions). However, unlike the
G-DM theory, the T,/T,, decreases with decreasing V*
for all n’s except n=0.5. In that case as 10%/P increases a
critical point occurs at 103/P x 70, in which the upper and
lower traces for V;=0.045 and V,=0.015 (not shown)
reverse positions relative to this lowest of the six
Vo =0.030 lines shown. Table / illustrates this V, reversal
for n=0.5 between 103/P of 50 and 75. Aside from this
complication, each of the hatched regions (including the
n=0.5 for 10*/P<50) converge upon its respective
V,=0.030 line as the molecular weight increases. The
relative rate at which this occurs can be estimated from
the data displayed for n=2 in Table 2.

Having considered the general variation of the G
theory, the logical extension is to compare the theory with
the available experimental data. If analyses are restricted
to only those polymers which have at least 25 data points
reasonably distributed over a wide range of molecular
weight, then only PMMA, polystyrene (PS), poly(vinyl
chiloride) (PVC), and poly-a-methyl styrene (P«MS) may
be considered. When the experimental data of these

* Theapparent reversal in these normalized plots is a result of the slope
changes in the absolute plots (cf. Discussion, ref. 11) and not a result of a
fundamental difference in the theoretical treatment.
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Figure 2 Reduced variables plot indicating the dependence of the glass transition (7;) upon the logarithmic reciprocal degree of
polymerization (=) as a function of free volume fraction (V,=0.030) and number- average of chain atom segments (%) per # (n=0.5, 1,
2, 4, 10, and 25). The hatched regions represent the terminus for V,=0.015 and V;=0.0456 (cf. Results section). These reduced curves

assume any constant value of flex energy (&)

Table 1 Ty/Tge values for G theory when X = 0.5P

=
10°/P 49 25 50 75 100

Vo

0.045 0913 0867 0825 0796 0.751

0.030 0906 0857 0822 0797 0.763

0.015 0893 0843 0813 0799 0.775

Table 2 74/Tg. values for G theory when ¥ = 2P

=
10°7P 40 25 50 75 100

Vo

0.045 0964 0936 0903 0882 0866

0.030 0959 0928 0895 0874 0859

0.015 0952 0915 0881 0859 0843

polymers were compared with the G theory, the statistical
analysis methodology which follows eliminated the latter
three polymers. (To conserve space these results will not
be shown.) Thereby, only eight data sets for PMMA
remained: Those prepared by free-radical polymerization
(O and @)''7 or by radiation degradation (®, @, and
®)%-8:19 some acrylic blends ({3)°, and two stereoregular
sets (® and ©)°. When these data are plotted using the
reduced format, Figure 3 results. In Figure 3a two curves
are transcribed from Figure 2, one which represents the
original G solution (x=2P, upper curve) and another
which corresponds to the B & W interpretation (x=P,
lower curve). Both curves relate to the early models of an
iso-free volume state, ¥, =0.030. Of the two, X = P appears
to fit the data best. This same fit also looks best when the
original G-DM solution (x =2P, V,=0.030) is compared
with the B & W solution of the G theory (cf. Figure 3b).
Other G-DM curves for x=P and either r=1.0 or
V,=0.030 do not appear to approximate the data as weli
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(¢f. Figure 5, ref. 10). The variation of the B & W
interpretation of the G theory for x = P, V;,=0.045 (upper
curve) and x=P, V;=0.015 (lower curve) merely con-
firmed the observations that V;, was of lesser importance
than n and that the curves were converging for P—oo( cf.
Figure 3c). Once again an inversion of the ¥, parameter
would occur for n=1 if P were less than 10 (cr. Table 1).

DISCUSSION

Statistical analysis using the entropic equation of state
(equation (1))

By inspection, the initial comparison of the various
theoretical approaches to the experimental results leads
to a preliminary appraisal of the theory and experiment:
that the G theory with x = P and V,,=0.030 is satisfactory
(middle curve, Figure 3c). Previous experimental analyses
have relied on this subjective type of evaluation. It seems
reasonable that, as the theoretical approaches increase in
sophistication, some objective curve fitting techniques
should be advanced. If (at least until a greater number of
more accurate T, measurements are available) all data are
weighed equally (regardless of source, synthesis details,
tacticity, physical form, thermal history, and test
methodology), then a sufficient data base might be
obtained which will lend itself to a statistical approach.

The details of the general method are straightforward
and involve the use of linear regression techniques?®
Prerequisites for using this methodology are that the data
be normally distributed and homoscedastic, ie. the
variance of the different data sets be equal. A specific
solution is sought by first plotting a scatter diagram of the
difference between T, of the theoretical expression and
each experimental data point (8)* versus the log,, 10°/P.

. ACtUa"y o= [(TJ x)rheomlcnl (Tg/ x)Expenmenlul] [(ﬁ:r/ﬂ)Theoreucal
— (B 1/ PErperimenta) fOr any arbitrary but constant e.
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Figure 3 Reduced variables plot for PMMA: O, Beevers and White'; @, Kim et a/.”; ®, Kusy and Greenberg'®; @, Kusy et al8 o, Kusy
et al. on blends?: ®, Pratt®; (, Thompson on isotactic PMMAS; and @, Thompson on syndiotactic PMMADS: (a), curves represent the
solution of the G theory for x=2P, V,=0.030 (original interpretation; upper) and for x=P, V,=0.030 (B & W interpretation; lower);

(b), curves compare the G—DM theory for x=2P, V,=0.030, and r=0.9-1.1 (upper) to the G theory via B & W for x=P, V,=0.030
(lower); and (c), curves illustrate the influence that V;, has on the G theory when x=/F and V;=0.045 (upper), V;,=0.030 (middie), or
V3=0.015 (lower)
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Use of the logarithmic function is an essential feature of
this approach since an otherwise curvilinear relation is
transformed to a rectilinear one. A regression line is then
drawn through the scatter diagram, and the statistical
significance is assessed by means of an F test?!. If there is
no significant difference between theoretical and experi-
mental values (designated the null hypothesis), then both
the slope and the intercept of the regression line will not
significantly differ from zero. F-values are determined asa
function of n (or V;), given a value of V, (or n) and a range
of 103/P. If p<0.05, then the nyll hypothesis must be
rejected and the alternative hypothesis (i.e. the experi-
mental results and the theoretical predictions are not in
agreement) must be adopted.

If for constant V¥, (or n) some values of n (or V,) are
found that satisfy the null hypothesis, then all solution sets
of (V,, n) are plotted for p =0.05. This is accomplished for
each satisfactory scatter diagram by transferring toa Vy—n
plot those (V;, n) co-ordinates that correspond to p=0.05
on the F-test plot. The loci of these upper and lower n (or
V,) values for constant ¥, (or n) form an envelope within
which p>0.05. Depending upon the exact nature of the
data set(s), the inherent scatter of each data set, and the
statistical significance associated with p, the (V,,n)
solution set(s) could result in a point or line, but most
likely in a closed or open-ended band (e.g. for PMMA) or
in the null set, i.e. where no combination of n and V satisfy
the criteria (e.g. PS, PVC, and PaMS).

How the analysis proceeds from this juncture depends
on the solution set. If a single point results, f* is
computed via equation (1) and ¢ is determined directly
provided T, is known (e.g. in refs. 22-24, T, =377 K). If
this solution is a line, however, one of two alternatives will
apply. If ¥, is a constant the solution for a single point
prevails, since B~ is independent of n. But if ¥, values with
n, then a range of §=’s and ¢'s will result over finite limits.
This last situation pertains to either a closed or open-
ended band, although in the latter case, the applicability
of the solution set will be determined by physical limita-
tions on the magnitude of the variables.

Applications of this methodology to PMMA data and
the G theory for nand V; is shown in Figures 4—6. Figure 4
shows the scatter diagrams for three representative V,’s
ranging from 0.045 (top) to 0.015 (bottom), all at x=P
(n=1). When 1 <10%/P <100, the data appear to be best
distributed around the regression line for the (V,, n) co-
ordinates (0.045, 1). In this case the slope and intercept are
indeed close to zero. While the assumption of normality is
increasingly difficult to sustain for 103/P>20, non-
normality errors do not preclude the use of the F-test,
unless the data is extremely skewed?°.

If the level of significance of the F-test versus n is
plotted, the degree to which the theory describes the data
can be directly interpreted (cf. Figure 5). For example,
when 1<103/P<100, the left-hand function for V=
0.045. In accordance with the null hypothesis, only those
n’s whose F values equal or exceed those corre-
sponding to p=0.05 will be rejected. Therefore, only the
remaining (V,, n) solutions which are contiguous to the
stippled regions (in this case, F=3.12 for 2 and 120
degrees of freedom) are acceptable. Within the context of
Figure 5 then, the solid circle on the V,=0.045 curve
represents the scatter diagram of Figure 4a; whereas the
solid circles on the V,=0.030 and V,=0.015 curves
denote Figures 4band 4c, respectively. Consistent with the
qualitative observation made in Figure 4, the statistical
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significance of the (V,, n) pairs is greatest for .1e first case.

By transcribing those co-ordinates for which p=0.05
from a F-n plot, the n—V}, interrelation may be obtained.
Figure 6 emphasizes one particular solution set for
Vo =0.030 as illustrated in Figure 5 (cf. open circles). As a
consequence of many F-n plots, a band results which
represents combinations of V¥, and n for which the null
hypothesis applies. Generally, the results show that
solutions occur over the entire range of ¥, with a lower
limit of n ~0.70. Moreover, by defining n as the number of
lattice sites occupied per mer in a dynamic ratherthanina
static sense, the decreases in V;, at T, with decreasing
molecular weight may be compensated by increases in n
(¢f. Figure 2). More specifically, Figure 6 amplifies the
dilemma that may have prompted the re-interpretation
of the G theory: for n=2, ¥, only equals 0.004-0.007. In
the literature ¥, typically ranges from 0.015 to 0.045 (cf.
the corresponding area of Figure 6 as detailed in Table
3)1 ~4.812.25-32 yith the most frequently quoted values
being reported in the range 0.025 to 0.035. Regardless of
whether an iso-viscosity or an iso-free volume state exists,
such low Vy’s (ie. <0.010) are not reasonable. When
B & W defined n=1, at least a portion of that solution set
was within the values which are generally regarded as
being plausible. As determined from the present statistical
analysis, however, that value of n is no more or less
significant than many of the other solutions. (For
example, compare the mean coordinates at the so-called
‘universal’ ¥, 0f 0.025,i.e. (0.025, 1.25) with the midpoint of
the acceptable solution set for n=1, i.e. (0.048, 1.00).
Finally, note that the statistical analysis technique rejects
the subjective evaluation which was advanced at the
outset of this discussion, i.e. that x=P (n=1) and
¥, =0.030.

Analysis using two equations of state (EVT and PVT)

The G theory was written at a time when the iso-free
volume concept was popular. Thereby, a free volume was
assumed or the ‘universal’ value was assigned, and the
value for ¢ was determined via equation (1). As a
consequence, ¢ was successfully used to compensate for
any errors associated either with the selection of a Vyat T,
or with the utilization of the Flory-Huggins lattice
model'®,

The preceding approach was considered for the statis-
tical analysis because it had been exclusively applied in
the literature. As a referee noted, however, the G approach
fails to explicitly consider the PVT equation of state (i.e.
equation (11) of ref. 4 or equation (2.15) of ref. 14%):

yEi2-1\ zaS?
fn (T/— =T, @

Here the fraction of holes contiguous to a site, S,, is
defined in terms of the number of vacant sites, ng, and the
number of chains n; (each comprising X segments):

z'n,

- [@=2)x+2]Jn:+2'n, )

So

and the fraction of chemically non-bonded but nearest
neighbouring segments to a site:

* The equations in these references assume that z=2'.
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Figure 4 Scatter diagrams for PMMA using G theory in which x=F (a), V,=0.045; (b), V,=0.030; and (c), V,=0.015 (cf. Figure 3c)
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NOW as the (lim)zr_,w, So= Vo and SX_= 1 - V0= I/x-.
Evaluating equation (2) as (lim),._, ., and substituting for

Se and S;:
1 1-Xx \ WV
ﬁ“?[(fa-vo)) (1—V0)2J )

in which f= —¢/kTand r=Ey/e=z'0/2¢. If r is known, a
value of 1, can be found from the recast PVT equation of
state (equation (5)), the B and x of which satisfy the
entropic equation of state (equation (1)). Unfortunately,
the value of r is unknown; nevertheless, theoretical curves
of V, versus T,/ T, may be obtained as a function of P and
r by taking ratios of 8,../8.

For a given r, Figure 7 shows that the V; dependence
with T,/T,, is almost rectilinear over a wide molecular
weight range, and that the r curves which may be

100 : -

S i
q " 0@ -
] g !
D |
\\o”gp
(1 10 E
1 F
1 I
1 _____ —— —---p=0.05
W e e

n

Figure 5 F-test results as a function of n for PMMA using G
theory (cf. Figure 4)

2.00

0.50 T T T —L — T T

.
0 0.050 0.100
Vo

Figure 6 Interrelation between n and V,, for PMMA using the G
theory. The stippled region denotes those (V,, n) co-ordinates for
which the null hypothesis applies. The shaded rectangular field
represents the solution set for an arbitrary r=2.0 when n=1.20+
0.03, given a decrease in V, from 0.032 to 0.023 as P varies from
oo to 10 .
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completely inscribed within the generally accepted ¥,
region of 0.015-0.045 (stippled region) range from 1.65 to
2.40. The former observation compares favourably with
the specific volume versus T, plot of G-DM in which their
theoretical relation (cf. Figure 4 of ref. 4) was contrasted
against the data of Fox and Flory, and Ueberreiter and
Kanig; whereas the latter observation markedly differs
from the G-DM theory in which a plot of — B versus 10°/P
yielded corresponding r values of C.93-1.13 (¢f. Figure 9 of
ref. 10).

If a value of r = 2.0 were arbitrarily chosen as a point of
reference, then over the entire molecular weight range of
10%/P =0-100, T,/ T,,, would decrease 13% while V, would
decrease by 27%,; in the commercial polymer regime
(103/P < 1), however, V, would decrease only from 0.0318
to 0.0311. Note that, although Figure 7 was constructed
with n=1, the V; versus T,/T,, plot is valid for any n
provided that each 10%/P curve is scaled appropriately, i.e.
multiplied by n. By using this scaling technique, the case of
n=2 may be directly compared with that for n=1. When
thisis done, both T,/ T, and ¥, decrease to a lesser extent,
given the same molecular weight range and the same ratio
of hole energy to flex energy considered previously.

If this corresponding range of V, (0.024-0.032) is
transferred to Figure 6 along with n=2, the conclusion is
immediately obvious: the solution set is outside of the
range of statistical significance for PMMA. If this same
arbitrary r value is retained over 0 < 103/P <100 but nand
V, are now both varied, then the statistically significant
solutions are in a relatively narrow field in which ¥, varies
over the range 0.023-0.032 and n=1.20 £ 0.03 (¢f. Tables 3
and 4 or Figures 6 and 7). Of course, another selection of r

010 1 v 3 11 1 1 1 i i L1
n=1
5 (4‘\0// R
0.08 B
/’
‘,\21 o
n
o I
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Figure 7 Dependence of V, on T7,/T, as a function of P~" and
inter-/intramolecular energy ratio (r). Although the plot is shown
for n=1, the Figure may be scaled for any n simply by multiplying
the values for 10%/P by n. The stippled region represents
0.015<V,<0.045
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could yield different but statistically acceptable combina-
tions of (V,, n). Clearly, more experimental work is needed
and a better lattice model than the Meyer-Flory~Huggins
is warranted before a more definitive solution can be
obtained.

CONCLUSIONS

After a brief description of the reduced T, parameter plot,
the influence of free volume fraction and chain segment
density on the G theory of the glass transition has been
shown as a function of P!, Of the four polymers which
have more than 25 T, data points available, only PMMA
satisfied the statistical criteria and required further
consideration. Via subjective means, the PMMA litera-
ture report n=1 and V,;=0.025 for an ¢ =0.96-1.00 Kcal
mol ! segment, while a current similar analysis estimated
that n=1 and ¥,=0.030 for an ¢=0.98 Kcal mol~!
segment (T;,, =377 K). Using a transformation in regres-
sion and an F-test, an objective analysis established that
many satisfactory (V,, n) combinations occur, of which
(0.048, 1.00) and (0.006, 2.00) are just two. Consequently, a
unique solution may only be obtained if in some way a
value for V, is assumed or if the ratio-of hole to flex energy
is assigned and the PVT equation of state is solved
simultaneously with the EVT equation of state.
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